Statistics of Shape via Principal Geodesic Analysis on Lie Groups

نویسندگان

  • P. Thomas Fletcher
  • Conglin Lu
  • Sarang C. Joshi
چکیده

Principal component analysis has proven to be useful for understanding geometric variability in populations of parameterized objects. The statistical framework is well understood when the parameters of the objects are elements of a Euclidean vector space. This is certainly the case when the objects are described via landmarks or as a dense collection of boundary points. We have been developing representations of geometry based on the medial axis description or m-rep. Although this description has proven to be effective, the medial parameters are not naturally elements of a Euclidean space. In this paper we show that medial descriptions are in fact elements of a Lie group. We develop methodology based on Lie groups for the statistical analysis of medially-defined anatomical objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Bodies: A Manifold Representation of 3D Human Shape

Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid...

متن کامل

Lecture Notes in Computer Science 7572

Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid...

متن کامل

Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis

The Gaussian distribution is the basis for many methods used in the statistical analysis of shape. One such method is principal component analysis, which has proven to be a powerful technique for describing the geometric variability of a population of objects. The Gaussian framework is well understood when the data being studied are elements of a Euclidean vector space. This is the case for geo...

متن کامل

Statistics of Shape via Principal Component Analysis on Lie Groups

Principal component analysis has proven to be useful for understanding geometric variability in populations of parameterized objects. The statistical framework is well understood when the parameters of the objects are elements of a Euclidean vector space. This is certainly the case when the objects are described via landmarks or as a dense collection of boundary points. We have been developing ...

متن کامل

Statistics of Pose and Shape in Multi-object Complexes Using Principal Geodesic Analysis

A main focus of statistical shape analysis is the description of variability of a population of geometric objects. In this paper, we present work in progress towards modeling the shape and pose variability of sets of multiple objects. Principal geodesic analysis (PGA) is the extension of the standard technique of principal component analysis (PCA) into the nonlinear Riemannian symmetric space o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003